Real function spaces

Real function spaces#

Author: Jørgen S. Dokken

License: MIT

In this example we will show how to use the “real” function space to solve a singular Poisson problem. The problem at hand is: Find \(u \in H^1(\Omega)\) such that

(1)#\[\begin{align} -\Delta u &= f \quad \text{in } \Omega, \\ \frac{\partial u}{\partial n} &= g \quad \text{on } \partial \Omega, \\ \int_\Omega u &= h. \end{align}\]

Lagrange multiplier#

We start by considering the equivalent optimization problem: Find \(u \in H^1(\Omega)\) such that

(2)#\[\begin{align} \min_{u \in H^1(\Omega)} J(u) = \min_{u \in H^1(\Omega)} \frac{1}{2}\int_\Omega \vert \nabla u \cdot \nabla u \vert \mathrm{d}x - \int_\Omega f u \mathrm{d}x - \int_{\partial \Omega} g u \mathrm{d}s, \end{align}\]

such that

(3)#\[\begin{align} \int_\Omega u = h. \end{align}\]

We introduce a Lagrange multiplier \(\lambda\) to enforce the constraint:

(4)#\[\begin{align} \min_{u \in H^1(\Omega), \lambda\in \mathbb{R}} \mathcal{L}(u, \lambda) = \min_{u \in H^1(\Omega), \lambda\in \mathbb{R}} J(u) + \lambda (\int_\Omega u \mathrm{d}x-h). \end{align}\]

We then compute the optimality conditions for the problem above

(5)#\[\begin{align} \frac{\partial \mathcal{L}}{\partial u}[\delta u] &= \int_\Omega \nabla u \cdot \nabla \delta u \mathrm{d}x + \lambda\int \delta u \mathrm{d}x - \int_\Omega f \delta u ~\mathrm{d}x - \int_{\partial \Omega} g \delta u~\mathrm{d}s = 0, \\ \frac{\partial \mathcal{L}}{\partial \lambda}[\delta \lambda] &=\delta \lambda (\int_\Omega u \mathrm{d}x -h)= 0. \end{align}\]

We write the weak formulation:

\[\begin{split} \begin{align} \int_\Omega \nabla u \cdot \nabla \delta u~\mathrm{d}x + \int_\Omega \lambda \delta u~\mathrm{d}x = \int_\Omega f \delta u~\mathrm{d}x + \int_{\partial \Omega} g v \mathrm{d}s\\ \int_\Omega u \delta \lambda \mathrm{d}x = h \delta \lambda . \end{align} \end{split}\]

where we have moved \(\delta\lambda\) into the integral as it is a spatial constant.

Implementation#

We start by creating the domain and derive the source terms \(f\), \(g\) and \(h\) from our manufactured solution For this example we will use the following exact solution

(6)#\[\begin{align} u_{exact}(x, y) = 0.3y^2 + \sin(2\pi x). \end{align}\]
from packaging.version import Version
from mpi4py import MPI
from petsc4py import PETSc
from dolfinx.cpp.la.petsc import scatter_local_vectors, get_local_vectors
import dolfinx.fem.petsc
import numpy as np
from scifem import create_real_functionspace, assemble_scalar
import ufl
M = 20
mesh = dolfinx.mesh.create_unit_square(
    MPI.COMM_WORLD, M, M, dolfinx.mesh.CellType.triangle, dtype=np.float64
)
V = dolfinx.fem.functionspace(mesh, ("Lagrange", 1))
def u_exact(x):
    return 0.3 * x[1] ** 2 + ufl.sin(2 * ufl.pi * x[0])
x = ufl.SpatialCoordinate(mesh)
n = ufl.FacetNormal(mesh)
g = ufl.dot(ufl.grad(u_exact(x)), n)
f = -ufl.div(ufl.grad(u_exact(x)))
h = assemble_scalar(u_exact(x) * ufl.dx)

We then create the Lagrange multiplier space

R = create_real_functionspace(mesh)

Next, we can create a mixed-function space for our problem

if dolfinx.__version__ == "0.8.0":
    u = ufl.TrialFunction(V)
    lmbda = ufl.TrialFunction(R)
    du = ufl.TestFunction(V)
    dl = ufl.TestFunction(R)
elif Version(dolfinx.__version__) >= Version("0.9.0.0"):
    W = ufl.MixedFunctionSpace(V, R)
    u, lmbda = ufl.TrialFunctions(W)
    du, dl = ufl.TestFunctions(W)
else:
    raise RuntimeError("Unsupported version of dolfinx")

We can now define the variational problem

zero = dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type(0.0))
a00 = ufl.inner(ufl.grad(u), ufl.grad(du)) * ufl.dx
a01 = ufl.inner(lmbda, du) * ufl.dx
a10 = ufl.inner(u, dl) * ufl.dx
L0 = ufl.inner(f, du) * ufl.dx + ufl.inner(g, du) * ufl.ds
L1 = ufl.inner(zero, dl) * ufl.dx
a = dolfinx.fem.form([[a00, a01], [a10, None]])
L = dolfinx.fem.form([L0, L1])

Note that we have defined the variational form in a block form, and that we have not included \(h\) in the variational form. We will enforce this once we have assembled the right hand side vector.

We can now assemble the matrix and vector

A = dolfinx.fem.petsc.assemble_matrix_block(a)
A.assemble()
b = dolfinx.fem.petsc.assemble_vector_block(L, a, bcs=[])

Next, we modify the second part of the block to contain h We start by enforcing the multiplier constraint \(h\) by modifying the right hand side vector

if dolfinx.__version__ == "0.8.0":
    maps = [(V.dofmap.index_map, V.dofmap.index_map_bs), (R.dofmap.index_map, R.dofmap.index_map_bs)]
elif Version(dolfinx.__version__) >= Version("0.9.0.0"):
    maps = [(Wi.dofmap.index_map, Wi.dofmap.index_map_bs) for Wi in W.ufl_sub_spaces()]
b_local = get_local_vectors(b, maps)
b_local[1][:] = h
scatter_local_vectors(
        b,
        b_local,
        maps,
    )
b.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

We can now solve the linear system

ksp = PETSc.KSP().create(mesh.comm)
ksp.setOperators(A)
ksp.setType("preonly")
pc = ksp.getPC()
pc.setType("lu")
pc.setFactorSolverType("mumps")
xh = dolfinx.fem.petsc.create_vector_block(L)
ksp.solve(b, xh)
xh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

Finally, we extract the solution u from the blocked system and compute the error

uh = dolfinx.fem.Function(V, name="u")
x_local = get_local_vectors(xh, maps)
uh.x.array[: len(x_local[0])] = x_local[0]
uh.x.scatter_forward()
diff = uh - u_exact(x)
error = dolfinx.fem.form(ufl.inner(diff, diff) * ufl.dx)
print(f"L2 error: {np.sqrt(assemble_scalar(error)):.2e}")
L2 error: 6.73e-03

We can now plot the solution

vtk_mesh = dolfinx.plot.vtk_mesh(V)
import pyvista
pyvista.start_xvfb()
grid = pyvista.UnstructuredGrid(*vtk_mesh)
grid.point_data["u"] = uh.x.array.real
warped = grid.warp_by_scalar("u", factor=1)
plotter = pyvista.Plotter()
plotter.add_mesh(grid, style="wireframe")
plotter.add_mesh(warped)
if not pyvista.OFF_SCREEN:
    plotter.show()
error: XDG_RUNTIME_DIR is invalid or not set in the environment.
MESA: error: ZINK: failed to choose pdev
glx: failed to create drisw screen