Real function spaces#
Author: Jørgen S. Dokken
License: MIT
In this example we will show how to use the “real” function space to solve
a singular Poisson problem.
The problem at hand is:
Find
Lagrange multiplier#
We start by considering the equivalent optimization problem:
Find
such that
We introduce a Lagrange multiplier
We then compute the optimality conditions for the problem above
We write the weak formulation:
where we have moved
Implementation#
We start by creating the domain and derive the source terms
from packaging.version import Version
from mpi4py import MPI
from petsc4py import PETSc
from dolfinx.cpp.la.petsc import scatter_local_vectors, get_local_vectors
import dolfinx.fem.petsc
import numpy as np
from scifem import create_real_functionspace, assemble_scalar
import ufl
M = 20
mesh = dolfinx.mesh.create_unit_square(
MPI.COMM_WORLD, M, M, dolfinx.mesh.CellType.triangle, dtype=np.float64
)
V = dolfinx.fem.functionspace(mesh, ("Lagrange", 1))
def u_exact(x):
return 0.3 * x[1] ** 2 + ufl.sin(2 * ufl.pi * x[0])
x = ufl.SpatialCoordinate(mesh)
n = ufl.FacetNormal(mesh)
g = ufl.dot(ufl.grad(u_exact(x)), n)
f = -ufl.div(ufl.grad(u_exact(x)))
h = assemble_scalar(u_exact(x) * ufl.dx)
We then create the Lagrange multiplier space
R = create_real_functionspace(mesh)
Next, we can create a mixed-function space for our problem
if dolfinx.__version__ == "0.8.0":
u = ufl.TrialFunction(V)
lmbda = ufl.TrialFunction(R)
du = ufl.TestFunction(V)
dl = ufl.TestFunction(R)
elif Version(dolfinx.__version__) >= Version("0.9.0.0"):
W = ufl.MixedFunctionSpace(V, R)
u, lmbda = ufl.TrialFunctions(W)
du, dl = ufl.TestFunctions(W)
else:
raise RuntimeError("Unsupported version of dolfinx")
We can now define the variational problem
zero = dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type(0.0))
a00 = ufl.inner(ufl.grad(u), ufl.grad(du)) * ufl.dx
a01 = ufl.inner(lmbda, du) * ufl.dx
a10 = ufl.inner(u, dl) * ufl.dx
L0 = ufl.inner(f, du) * ufl.dx + ufl.inner(g, du) * ufl.ds
L1 = ufl.inner(zero, dl) * ufl.dx
a = dolfinx.fem.form([[a00, a01], [a10, None]])
L = dolfinx.fem.form([L0, L1])
Note that we have defined the variational form in a block form, and
that we have not included
We can now assemble the matrix and vector
A = dolfinx.fem.petsc.assemble_matrix_block(a)
A.assemble()
b = dolfinx.fem.petsc.assemble_vector_block(L, a, bcs=[])
Next, we modify the second part of the block to contain h
We start by enforcing the multiplier constraint
if dolfinx.__version__ == "0.8.0":
maps = [(V.dofmap.index_map, V.dofmap.index_map_bs), (R.dofmap.index_map, R.dofmap.index_map_bs)]
elif Version(dolfinx.__version__) >= Version("0.9.0.0"):
maps = [(Wi.dofmap.index_map, Wi.dofmap.index_map_bs) for Wi in W.ufl_sub_spaces()]
b_local = get_local_vectors(b, maps)
b_local[1][:] = h
scatter_local_vectors(
b,
b_local,
maps,
)
b.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
We can now solve the linear system
ksp = PETSc.KSP().create(mesh.comm)
ksp.setOperators(A)
ksp.setType("preonly")
pc = ksp.getPC()
pc.setType("lu")
pc.setFactorSolverType("mumps")
xh = dolfinx.fem.petsc.create_vector_block(L)
ksp.solve(b, xh)
xh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
Finally, we extract the solution u from the blocked system and compute the error
uh = dolfinx.fem.Function(V, name="u")
x_local = get_local_vectors(xh, maps)
uh.x.array[: len(x_local[0])] = x_local[0]
uh.x.scatter_forward()
diff = uh - u_exact(x)
error = dolfinx.fem.form(ufl.inner(diff, diff) * ufl.dx)
print(f"L2 error: {np.sqrt(assemble_scalar(error)):.2e}")
L2 error: 6.73e-03
We can now plot the solution
vtk_mesh = dolfinx.plot.vtk_mesh(V)
import pyvista
pyvista.start_xvfb()
grid = pyvista.UnstructuredGrid(*vtk_mesh)
grid.point_data["u"] = uh.x.array.real
warped = grid.warp_by_scalar("u", factor=1)
plotter = pyvista.Plotter()
plotter.add_mesh(grid, style="wireframe")
plotter.add_mesh(warped)
if not pyvista.OFF_SCREEN:
plotter.show()
error: XDG_RUNTIME_DIR is invalid or not set in the environment.