Nonlinear elasticity with blocked Newton solver

Nonlinear elasticity with blocked Newton solver#

Author: Henrik N. T. Finsberg

SPDX-License-Identifier: MIT

In this example we will solve a nonlinear elasticity problem using a blocked Newton solver. We consider a unit cube domain \(\Omega = [0, 1]^3\) with Dirichlet boundary conditions on the left face and traction force on the right face, and we seek a displacement field \(\mathbf{u}: \Omega \to \mathbb{R}^3\) that solves the momentum balance equation

\[\begin{split} \begin{align} \nabla \cdot \mathbf{P} = 0, \quad \mathbf{X} \in \Omega, \\ \end{align} \end{split}\]

where \(\mathbf{P}\) is the first Piola-Kirchhoff stress tensor, and \(\mathbf{X}\) is the reference configuration. We consider a Neo-Hookean material model, where the strain energy density is given by

\[ \begin{align} \psi = \frac{\mu}{2}(\text{tr}(\mathbf{C}) - 3), \end{align} \]

and the first Piola-Kirchhoff stress tensor is given by

\[ \begin{align} \mathbf{P} = \frac{\partial \psi}{\partial \mathbf{F}} \end{align} \]

where \(\mathbf{F} = \nabla \mathbf{u} + \mathbf{I}\) is the deformation gradient, \(\mathbf{C} = \mathbf{F}^T \mathbf{F}\) is the right Cauchy-Green tensor, \(\mu\) is the shear modulus, and \(p\) is the pressure. We also enforce the incompressibility constraint

\[ \begin{align} J = \det(\mathbf{F}) = 1, \end{align} \]

so that the total Lagrangian is given by

\[ \begin{align} \mathcal{L}(\mathbf{u}, p) = \int_{\Omega} \psi \, dx - \int_{\partial \Omega} t \cdot \mathbf{u} \, ds + \int_{\Omega} p(J - 1) \, dx. \end{align} \]

Here \(t\) is the traction force which is set to \(10\) on the right face of the cube and \(0\) elsewhere. The Euler-Lagrange equations for this problem are given by: Find \(\mathbf{u} \in V\) and \(p \in Q\) such that

\[\begin{split} \begin{align} D_{\delta \mathbf{u} } \mathcal{L}(\mathbf{u}, p) = 0, \quad \forall \delta \mathbf{u} \in V, \\ D_{\delta p} \mathcal{L}(\mathbf{u}, p) = 0, \quad \forall \delta p \in Q, \end{align} \end{split}\]

where \(V\) is the displacement space and \(Q\) is the pressure space. For this we select \(Q_2/P_1\) elements i.e second order Lagrange elements for \(\mathbf{u}\) and first order discontinuous polynomial cubical elements for \(p\), which is a stable element for incompressible elasticity [ABeiraodVL+13]. Note also that the Euler-Lagrange equations can be derived automatically using ufl.

import logging
from mpi4py import MPI
import numpy as np
import ufl
import dolfinx
import scifem

Initialize logging and set log level to info

logging.basicConfig(level=logging.INFO)

We create the mesh and the function spaces

mesh = dolfinx.mesh.create_unit_cube(
    MPI.COMM_WORLD, 3, 3, 3, dolfinx.mesh.CellType.hexahedron, dtype=np.float64
)
V = dolfinx.fem.functionspace(mesh, ("Lagrange", 2, (3,)))
Q = dolfinx.fem.functionspace(mesh, ("DPC", 1,))

And the test and trial functions

v = ufl.TestFunction(V)
q = ufl.TestFunction(Q)
du = ufl.TrialFunction(V)
dp = ufl.TrialFunction(Q)
u = dolfinx.fem.Function(V)
p = dolfinx.fem.Function(Q)

Next we create the facet tags for the left and right faces

def left(x):
    return np.isclose(x[0], 0)
def right(x):
    return np.isclose(x[0], 1)
facet_tags = scifem.create_entity_markers(
    mesh, mesh.topology.dim - 1, [(1, left, True), (2, right, True)]
)

We create the Dirichlet boundary conditions on the left face

facets_left = facet_tags.find(1)
dofs_left = dolfinx.fem.locate_dofs_topological(V, 2, facets_left)
u_bc_left = dolfinx.fem.Function(V)
u_bc_left.x.array[:] = 0
bc = dolfinx.fem.dirichletbc(u_bc_left, dofs_left)

Define the deformation gradient, right Cauchy-Green tensor, and invariants of the deformation tensors

d = len(u)
I = ufl.Identity(d)             # Identity tensor
F = I + ufl.grad(u)             # Deformation gradient
C = F.T*F                       # Right Cauchy-Green tensor
I1 = ufl.tr(C)                  # First invariant of C
J  = ufl.det(F)                 # Jacobian of F

Traction for to be applied on the right face

t = dolfinx.fem.Constant(mesh, dolfinx.default_scalar_type(10.0))
N = ufl.FacetNormal(mesh)
# Material parameters and strain energy density
mu = dolfinx.fem.Constant(mesh, 10.0)
psi = (mu / 2)*(I1 - 3)

We for the total Lagrangian

L = psi*ufl.dx - ufl.inner(t * N, u)*ufl.ds(subdomain_data=facet_tags, subdomain_id=2)  + p * (J - 1) * ufl.dx

and take the first variation of the total Lagrangian to obtain the residual

r_u = ufl.derivative(L, u, v)
r_p = ufl.derivative(L, p, q)
R = [r_u, r_p]

We do the same for the second variation to obtain the Jacobian

K = [
    [ufl.derivative(r_u, u, du), ufl.derivative(r_u, p, dp)],
    [ufl.derivative(r_p, u, du), ufl.derivative(r_p, p, dp)],
]

Now we can create the Newton solver and solve the problem

petsc_options = {"ksp_type": "preonly", "pc_type": "lu", "pc_factor_mat_solver_type": "mumps"}
solver = scifem.NewtonSolver(R, K, [u, p], max_iterations=25, bcs=[bc], petsc_options=petsc_options)

We can also set a callback function that is called before and after the solve, which takes the solver object as input

def pre_solve(solver: scifem.NewtonSolver):
    print(f"Starting solve with {solver.max_iterations} iterations")
def post_solve(solver: scifem.NewtonSolver):
    print(f"Solve completed in with correction norm {solver.dx.norm(0)}")
solver.set_pre_solve_callback(pre_solve)
solver.set_post_solve_callback(post_solve)
solver.solve()
INFO:scifem.solvers:Newton iteration 1: r (abs) = 60.79972169116895 (tol = 1e-10), r (rel) = 1.0(tol = 1e-10)
INFO:scifem.solvers:Newton iteration 2: r (abs) = 9.289281588000662 (tol = 1e-10), r (rel) = 0.15278493600982904(tol = 1e-10)
Starting solve with 25 iterations
Solve completed in with correction norm 728.8606816927024
Starting solve with 25 iterations
Solve completed in with correction norm 114.65409622584312
Starting solve with 25 iterations
INFO:scifem.solvers:Newton iteration 3: r (abs) = 1.9945156715634544 (tol = 1e-10), r (rel) = 0.032804684233499616(tol = 1e-10)
INFO:scifem.solvers:Newton iteration 4: r (abs) = 0.013328841102463112 (tol = 1e-10), r (rel) = 0.0002192253637305564(tol = 1e-10)
Solve completed in with correction norm 19.979899461097
Starting solve with 25 iterations
Solve completed in with correction norm 0.12246721729911668
Starting solve with 25 iterations
INFO:scifem.solvers:Newton iteration 5: r (abs) = 1.4961407162124635e-06 (tol = 1e-10), r (rel) = 2.46076902097033e-08(tol = 1e-10)
INFO:scifem.solvers:Newton iteration 6: r (abs) = 1.0848853884253929e-13 (tol = 1e-10), r (rel) = 1.7843591356158635e-15(tol = 1e-10)
Solve completed in with correction norm 1.2223032734032295e-05
Starting solve with 25 iterations
Solve completed in with correction norm 8.00742825690604e-13
6

Finally, we can visualize the solution using pyvista

import pyvista
pyvista.start_xvfb()
p = pyvista.Plotter()
topology, cell_types, geometry = dolfinx.plot.vtk_mesh(V)
grid = pyvista.UnstructuredGrid(topology, cell_types, geometry)
linear_grid = pyvista.UnstructuredGrid(*dolfinx.plot.vtk_mesh(mesh))
grid["u"] = u.x.array.reshape((geometry.shape[0], 3))
p.add_mesh(linear_grid, style="wireframe", color="k")
warped = grid.warp_by_vector("u", factor=1.5)
p.add_mesh(warped, show_edges=False)
p.show_axes()
if not pyvista.OFF_SCREEN:
    p.show()
else:
    figure_as_array = p.screenshot("displacement.png")
INFO:matplotlib.font_manager:generated new fontManager
WARNING:py.warnings:/usr/local/lib/python3.10/dist-packages/pyvista/jupyter/notebook.py:34: UserWarning: Failed to use notebook backend: 

No module named 'trame'

Falling back to a static output.
  warnings.warn(
../_images/ee1db8656dda464b3baa51c04d004567a57c7a757e2d7bf9a7613cbc79f96f07.png

References#

[ABeiraodVL+13]

Ferdinando Auricchio, Lourenço Beirão da Veiga, Carlo Lovadina, Alessandro Reali, Robert L Taylor, and Peter Wriggers. Approximation of incompressible large deformation elastic problems: some unresolved issues. Computational Mechanics, 52:1153–1167, 2013.