Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Scientific Computing at Simula Research Laboratory

This page contains information about Scientific Computing at Simula Research Laboratory.

For information related to the projects at Department of Computational Physiology go here.

Software

A list scientific software (and corresponding publication) developed by personnel in the Scientific Computing Department.

FEniCS

Simulation

Meshing

Fluid Dynamics

FSI

Brain

Heart

Other

Missing a package?

If you package is missing from the list, go to Add new package

Reproducibility

We think reproducibility is important and we have created some guidelines for reproducible research.

On this web-page we discuss what is needed when you want to publish a paper that contains some code, and we are created two example papers that follows these guidelines

We provide repositories that can generate a repository structure automatically by using Cookiecutter

References
  1. Devold, I. S., Rognes, M. E., & Rangamani, P. (2025). Mechanochemical modeling of exercise-induced skeletal muscle hypertrophy. bioRxiv. 10.64898/2025.12.17.694686
  2. Dokken, J. S. (2024). ADIOS4DOLFINx: A framework for checkpointing in FEniCS. Journal of Open Source Software, 9(96), 6451. 10.21105/joss.06451
  3. Laughlin, J. G., Dokken, J. S., Finsberg, H. N. t., Francis, E. A., Lee, C. T., Rognes, M. E., & Rangamani, P. (2023). SMART: Spatial Modeling Algorithms for Reactions and Transport. Journal of Open Source Software, 8(90), 5580. 10.21105/joss.05580
  4. Budisa, A., Hu, X., Kuchta, M., Mardal, K.-A., & Zikatanov, L. (2022). HAZniCS – Software Components for Multiphysics Problems. arXiv. 10.48550/ARXIV.2210.13274
  5. Mardal, K.-A., Rognes, M. E., Thompson, T. B., & Valnes, L. M. (2022). Getting started: from T1 images to simulation. In Mathematical Modeling of the Human Brain: From Magnetic Resonance Images to Finite Element Simulation (pp. 23–46). Springer International Publishing. 10.1007/978-3-030-95136-8_3
  6. Kjeldsberg, H. A., Bergersen, A. W., & Valen-Sendstad, K. (2019). morphMan: Automated manipulation of vascular geometries. Journal of Open Source Software, 4(35), 1065. 10.21105/joss.01065
  7. Kjeldsberg, H. A., Bergersen, A. W., & Valen-Sendstad, K. (2023). VaMPy: An Automated and Objective Pipeline for Modeling Vascular Geometries. Journal of Open Source Software, 8(85), 5278. 10.21105/joss.05278
  8. Yamamoto, K., Bruneau, D. A., Ring, J., Dokken, J. S., & Valen-Sendstad, K. (2025). VaSP: Vascular Fluid-Structure Interaction Pipeline. SoftwareX, 32, 102392. 10.1016/j.softx.2025.102392
  9. Causemann, M., Vinje, V., & Rognes, M. E. (2022). Human intracranial pulsatility during the cardiac cycle: a computational modelling framework. bioRxiv. 10.1101/2022.05.19.492650
  10. Finsberg, H. N. T., van Herck, I. G. M., Daversin-Catty, C., Arevalo, H., & Wall, S. (2023). simcardems: A FEniCS-based cardiac electro-mechanics solver. Journal of Open Source Software, 8(81), 4753. 10.21105/joss.04753
  11. Finsberg, H., & Hake, J. (2024). gotranx: General ODE translator. Journal of Open Source Software, 9(102), 7063. 10.21105/joss.07063